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Abstract

Prior to 1994, student registration at Newcastle University involved students being registered in a
single place, where they would present a form which had previously been filled in by the student
and their department. After registration this information was then transferred to a computerised
format. The University decided that the entire registration process was to be computerised for the
Autumn of 1994, with the admission and registration  being carried out at the departments of the
students. Such a system has a very high availability requirement: admissions tutors and secretaries
must be able to access and create student records (particularly at the start of a new academic year
when new students arrive). The Arjuna distributed system has been under development in the
Department of Computing Science for many years. Arjuna’s design aims are to provide tools to
assist in the construction of fault-tolerant, highly available distributed applications using atomic
actions (atomic transactions) and replication. Arjuna offers the right set of facilities for this
application, and its deployment would enable the University to exploit the existing campus network
and workstation clusters, thereby obviating the need for any specialised fault tolerant hardware.
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1. Introduction

In most British Universities, the process of registering all students as members of the institution is
largely concentrated into a very short period of time. At the University of Newcastle, the registration
period occupies a little over a week in September, at the start of the academic year. The purpose of the
registration process is to determine which students will be taking courses within the University, and for
the administration to keep its records up-to-date. From the students point of view, registration enables
them to acquire the necessary authorised membership of the University, and where relevant, obtain their
grant cheques. It is usually the case that students will register for particular courses, or modules, at the
same time, and the information collected is used by members of the teaching staff to construct class
lists, etc.

Prior to 1994, registration involved students being registered in a single place within the University,
where they would present a form which had previously been filled in elsewhere by the student and their
department. After registration this information was then transferred to a computer system. In 1993, the
University decided that the entire student registration process was to be computerised (electronic
registration) for the Autumn of 1994. The decision was also made to decentralise the registration
process so that the end users of the course data, the various University departments, would have more
control over the accuracy of the data entered. It was also expected that the delay before the final data
could be delivered back to the departments would be considerably reduced. Although the same
registration forms were issued to students, available data concerning each student had already been
entered in the system database. At the registration, using unique student number as a key, student data
was retrieved from the database and updated as necessary.

Needless to say that the registration process is extremely important to the University and the
students: the University cannot receive payments for teaching the students, and students cannot receive



their grants or be taught until they have been registered. Thus the electronic registration system has a
very high availability and consistency requirement; admissions tutors and secretaries must be able to
access and create student records (particularly at the start of a new academic year when new students
arrive). The high availability requirement implies that the computerised registration system must be
able to tolerate a ’reasonable’ number of machine and network related failures, and the consistency
requirement implies that the integrity of stored data (student records) must be maintained in the
presence of concurrent access from users and the types of failures just mentioned. It was expected that
most human errors, such as incorrectly inputting data, would be detected by the system as they
occurred, but some “off-line” data manipulation would be necessary for errors which had not been
foreseen. Tolerance against catastrophic failures (such as complete electrical power failure, or a fire
destroying much of the University infrastructure) although desirable, was not considered within the
remit of the registration system.

A solution that would require the University buying and installing specialist fault-tolerant computing
systems, such as Tandem [1] or Stratus [2] was not considered economically feasible. The only option
worth exploring was exploiting the University's existing computing resources. Like most other
universities, Newcastle has hundreds of networked computers (Unix workstations, PCs, Macs) scattered
throughout the campus. A solution that could make use of these resources and achieve availability by
deploying software-implemented fault-tolerance techniques certainly looked attractive.

The Arjuna distributed system [3,4,5] has been under development in the Computing Science
Department at the University since 1986. The first public release of the system was made available in
1991, and since then the system has been used by a number of academic and commercial organisations
as a vehicle for understanding and experimenting with software implemented fault-tolerance techniques.
Arjuna provides a set of tools for the construction of fault-tolerant, distributed applications using atomic
actions (atomic transactions) [6] for maintaining consistency of objects and replication of objects
maintaining availability. Arjuna runs on Unix workstations, so it offered the promise of delivering the
availability and consistency required by the student registration system without requiring any specialist
computing equipment. In the summer of 1994 we (recklessly?) convinced the University to go
electronic and committed ourselves to delivering a system that would run on a cluster of Unix
workstations and provide transactional access to student records from PC and Macintosh front end
machines located in various departments.

This paper describes the design and implementation of the student registration system built as an
Arjuna application. The registration system been in use since October 1994, and during each five day
registration period approximately 14,000 students are registered. The system illustrates that software
implemented fault tolerance techniques can be deployed to build high availability distributed
applications using general-purpose ('off-the-shelf') components such as Unix workstations connected by
LANs. Although distributed objects, transactions and replication techniques that have been used here
are well-known in the research literature, we are not aware of any other mission-critical application that
routinely makes use of them over commonly available hardware/software platforms.

2. Failure Assumptions

It is assumed that the hardware components of the system are computers (nodes), connected by a
communication subsystem. A node is assumed to work either as specified or simply to stop working
(crash). After a crash, a node is repaired within a finite amount of time and made active again. A node
may have both stable (crash-proof) and non-stable (volatile) storage or just non-stable storage. All of
the data stored on volatile storage is assumed to be lost when a crash occurs; any data stored on stable
storage remains unaffected by a crash.

The communication environment can be modeled as either asynchronous or synchronous. In an
asynchronous environment message transmission times cannot be estimated accurately, and the
underlying network may well get partitioned (e.g., due to a crash of a gateway node and/or network
congestion) preventing functioning processes from communicating with each other; in such an
environment, timeouts and network level ‘ping’ mechanisms cannot act as an accurate indication of
node failures (they can only be used for suspecting failures). We will call such a communication
environment partitionable. In a synchronous communication environment, functioning nodes are
capable of communicating with each other, and judiciously chosen timeouts together with network level
‘ping’ mechanisms can act as an accurate indication of node failures. We will call such a
communication environment non-partitionable.



The student registration system can be viewed as composed of  two sub-systems: the ’Arjuna sub-
system’ that runs on a cluster of Unix workstations and is responsible for storing and manipulating
student data using transactions, and the ’front-end’ sub-system, the collection of PCs and Macs each
running a menu driven graphical user interface that users employ to access student data through the
Arjuna sub-system (see fig. 1).
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Figure 1: The student registration system.

The Arjuna-subsystem was engineered to run in a non-partitionable environment by ensuring that the
entire cluster of machines was on a single, lightly loaded LAN segment; this decision was made to
simplify the task of consistency management of replicated data (as can be appreciated, the problem of
consistency management is quite hard in a partitionable environment). The current configuration
consists of eight Unix workstations, of which three act as a triplicated database (object store). On the
other hand, the front-end system was expected to run in a partitionable environment; however, we
assume that a partition in a network is eventually repaired. We had no control on the placement of user
machines, so we could not assume a non-partitionable environment for user machines. Note that there
are no consistency problems if a front-end machine gets disconnected from the Arjuna sub-system, as
the latter sub-system can abort any on-going transaction if a failure is suspected.

3. Arjuna overview

3.1. Objects and actions

Arjuna is an object-oriented programming system, implemented in C++ [3,4,5], that provides a set of
tools for the construction of fault-tolerant distributed applications. Objects obtain desired properties
such as concurrency control and persistence by inheriting suitable base classes. Arjuna supports the
computational model of nested atomic actions (nested atomic transactions) controlling operations on
persistent (long-lived) objects. Atomic actions guarantee consistency in the presence of failures and
concurrent users, and Arjuna objects can be replicated on distinct nodes in order to obtain high
availability.

The object and atomic action model provides a natural framework for designing fault-tolerant
systems with persistent objects. When not in use a persistent object is assumed to be held in a passive
state in an object store (a stable object repository) and is activated on demand (i.e., when an invocation
is made) by loading its state and methods from the persistent object store to the volatile store. Arjuna
uniquely identifies each persistent object by an instance of a unique identifier (Uid).

Each Arjuna object is an instance of some class. The class defines the set of instance variables each
object will contain and the methods that determine the behaviour of the object. The operations of an
object have access to the instance variables and can thus modify the internal state of that object. Arjuna
objects are responsible for their own state management and concurrency control, which is based upon
multiple-readers single-writer locks.

All operation invocations may be controlled by the use of atomic actions that have the well known
properties of serialisability, failure atomicity, and permanence of effect. Furthermore, atomic actions
can be nested. A commit protocol is used during the termination of an outermost atomic action (top-
level action) to ensure that either all the objects updated within the action have their new states recorded



on stable storage (committed), or, if the atomic action aborts, no updates are recorded. Typical failures
causing a computation to be aborted include node crashes and continued loss of messages caused by a
network partition. It is assumed that, in the absence of failures and concurrency, the invocation of an
operation produces consistent (class specific) state changes to the object. Atomic actions then ensure
that only consistent state changes to objects take place despite concurrent access and any failures.

3.2. Distribution

Distributed execution in Arjuna is based upon the client-server model: using the remote procedure
call mechanism (RPC), a client invokes operations on remote objects which are held within server
processes. Distribution transparency is achieved through a stub generation tool that provides client and
server stub code that hides the distributed nature of the invocation. The client stub object is the proxy of
the remote object in the client’s address space; it has the same operations as the remote object, each of
which is responsible for invoking the corresponding operation on the server stub object, which then
calls the actual object.

Arjuna creates server processes automatically on demand, as invocations to objects are made. When
a client first requests an operation on a remote object, it sends a message to a special daemon process
called the manager, requesting the creation of a new server, which is then responsible for replying to the
client. All subsequent invocations from that client are then sent to this server. The created server is
capable of loading the state of the object from object store where the object state resides (state loading
normally happens as a side effect of the client managing to lock the object). What happens if the client
does not get a response? This could be because of one of several reasons, such as: (i) it is a first
invocation, and the manager is busy with other requests, so it has not yet got round to creating the
server; (ii) the server has not yet finished computing; (iii) the server’s machine has crashed (in which
case no response will come). If no reply is forthcoming after waiting for a while, the client uses a ping
mechanism to determine if the destination machine is working (see below) and retries only if the
machine is determined to be working, else a fail exception is returned. Normally, client’s response to
this exception will be to abort the current transaction. The length of time which the client should wait is
therefore crucial to the performance of the system. If the time-out interval is too short, requests will be
repeated unnecessarily, but if it is too long, the client might wait a long time before realising that the
server machine has crashed.

In order to better distinguish between the case where the machine has crashed and the machine is
merely running slowly, Arjuna installs a dedicated daemon process on a machine, the ping daemon,
whose sole responsibility is to respond to “are you alive” ping messages. Whenever a client has not
received a response to an RPC request, it “pings” the destination machine. If ping fails to produce a
response -even after several retries - then the machine is assumed to have failed and no RPC retries are
made.

3.3. Object replication

A persistent object can become unavailable due to failures such as a crash of the object server, or
network partition preventing communications between clients and the server. The availability of an
object can be increased by replicating it on several nodes. Arjuna implements strong consistency which
requires that the states of all replicas that are regarded as available be mutually consistent (so the
persistent states of all available replicas are required to be identical). Object replicas must therefore be
managed through appropriate replica-consistency protocols to ensure strong consistency.  To tolerate K
replica failures, in a non-partitionable network, it is necessary to maintain at least K+1 replicas of an
object, whereas in a partitionable network, a minimum of 2K+1 replicas are necessary to maintain
availability in the partition with access to the majority of the replicas (the object becomes unavailable in
all of the other partitions) [6]. As the Arjuna sub-system was assumed to run in a non-partitionable
network, K+1 replicas were required (K = 2  was considered sufficient for this particular application).

The default replication protocol in Arjuna is based upon single-copy passive replication: although the
object’s state is replicated on a number of nodes, only a single replica (the primary server) is activated,
which regularly checkpoints its state to the object stores where the states are stored. This checkpointing
occurs as a part of the commit processing of the application, so if the primary fails, the application must
abort the affected atomic action. Restarting the action results in a new primary being activated.



Primary Server

States

Backup Server

Figure 2: Passive replication.

This is illustrated in Fig. 2, where an object’s state is replicated on three object stores. All clients
send requests to the primary, which loads the state of the object from any one of the replicated object
stores. If the state is modified it is written back to those stores when the top-level action commits.
Stores where the states cannot be updated are excluded from subsequent invocations until they have
been updated by a recovery mechanism. If the primary server fails then a backup server gets created. As
long as a single state and server replica are available, the object can be used. Replication in Arjuna is
discussed in more detail in [7,8].

4. System architecture

Based upon the experiences of the manual registration process, it was anticipated that 100 front-end
machines would be necessary for the purposes of the registration exercise, resulting in a maximum of
100 simultaneous users. These machines (PC-compatible machines and Apple Macintosh systems),
would be distributed throughout the University campus. For each of these two types of machine, a user-
friendly interface program (front-end) was written, which would display the equivalent of the original
paper registration form. The student data would be retrieved from an information store, written using
Arjuna. In the following sections we shall examine this architecture in more detail.

4.1 The student information store

It is important that the student information is stored and manipulated in a manner which protects it
from machine crashes. Furthermore, this information should be made accessible from anywhere in the
campus, and kept consistent despite concurrent accesses. Therefore, a distributed information store (the
registration database) was built using the facilities provided by Arjuna. The database represents each
student record as a separate persistent object (approximately 1024 bytes), the StudentRecord, which is
responsible for its own concurrency control, state management, and replication. This enables update
operations on different student records (StudentRecord objects) to occur concurrently, improving the
throughput of the system. Each StudentRecord object was manipulated within the scope of an atomic
action, which was begun whenever a front-end system requested access to the student data; this
registration action may modify the student record, or simply terminate without modifying the data,
depending upon the front-end user’s requirements.

Each StudentRecord has methods for storing and retrieving the student’s information:
• retrieveRecord: obtain the student data record from the database, acquiring a read lock in the

process.
• retrieveExclusiveRecord: obtain the student data record, acquiring a write (exclusive) lock.
• storeRecord: store the student data in the database; if a record already exists then this operation fails.
• replaceRecord: create/overwrite the student data in the database.

These methods are accessed through a server process; one server for each object.
To improve the availability of the database, it was decided to replicate each StudentRecord object, as

described in Section 2. We decided to replicate the object states on three machines dedicated to this
purpose (HP710s), the object stores. The system could therefore tolerate the failure of two object store
machines. In addition, each primary server had two backup servers as described below.

As previously described, the registration system was expected to cope with 100 simultaneous users.
Each such user has a dedicated Arjuna client process running on one of five HP710 Unix workstations
of the Arjuna sub-system (the processing machines, see fig. 1) that is responsible for initiating



transactions on student data. Because each StudentRecord is accessed through a separate server process
this requires the ability to deal with 100 simultaneous processes. The same five workstations were used
for this purpose to distribute this load evenly. These machines were also used for backup StudentRecord
servers; each StudentRecord object was allocated a primary server machine, with backup server
machines in the event of failures. If a server machine failed, load was evenly redistributed across the
remaining (backup) machines; each primary has two backups.
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Figure 3: Server replica distribution.

Fig. 3 illustrates the server replication for 5 StudentRecord objects numbered 1 to 5. Machine A is
the primary server for student number 1, with the first backup on machine B, and the final backup on D.
Similarly, for student number 4, the primary server machine is D, with primary and secondary backups
A and E respectively.

Each student is identified within the University, and to the database system, by a unique student
number. With a suitable hashing function, the student number was found to provide a uniform
distribution of primary servers across the available server machines. When a primary machine failure
was detected, the client process recomputes the location of the new primary server for the student object
based upon the new number of available machines. This mapping of student number to server location
was performed dynamically while doing an  ‘open’ on a StudentRecord.

4.2 The registration service

At the start of each registration day each front-end system is connected by a TCP connection to one
of the five HP710 UNIX systems. One process for each connected front-end is created on the UNIX
system; this process is responsible for interpreting the messages from the front-end and translating them
into corresponding operations on the registration database. This is the Arjuna client process mentioned
earlier, and typically existed for the day. In order to balance the load on these systems, each user was
asked to connect to a particular client system. If that system was unavailable, then the user was asked to
try a particular backup system from among the other machines.

Client processes, having received requests from the front-end systems, are then responsible for
communicating with Arjuna server processes which represent the appropriate StudentRecord objects.
As described earlier, the location of each server process was determined by the student number. If this
is a request to open a student’s record, then the client process starts an atomic action within which all
other front-end requests on this student will occur. The server process exists for the duration of the
registration action. The mapping of processes to machines is illustrated in fig. 4. In summary, the
Arjuna sub-system thus consists of eight machines, of which three are used exclusively as object store
machines.
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Figure 4: Client, server and user processes.

Included with the front-ends were 2-5 swipe-stations1, which were introduced in the second year of
operation. Registration forms were modified to include a bar-code containing the student’s registration
number. This was used by the swipe-stations to quickly determine the status of a student. These stations
were only used to read the student’s data, and therefore no modification of the data occurred.

5. Registration operation

Having described the overall system architecture we shall now examine the operation of the
registration system, showing how existing students were registered, new students were added to the
system, and the data was examined.

5.1 Initial set-up

Prior to the start of the registration period, the database was pre-loaded with data pertaining to
existing students, and data from the national university admissions organisation who supply data
concerning new students who are expected to arrive at the University. However, under some
circumstances it was expected that a small number of new student records would have to be created
during the registration process itself:
• A student may, for some reason, have been admitted directly by the University. This can happen in

the case of students admitted very late in the admissions process. Such students do not possess a
student number, and have to be assigned a valid number before registration can occur.

• There are also a number of students who, having formerly been students at the University, wish to
return to take another course. It is the University’s policy in these circumstances to give the student
the same number as s/he used previously.

Thus, requests to create new records need to allow the user to supply the student number
corresponding to the new record, or to allow the system to assign a student number.

Earlier we stated that Arjuna identifies each persistent object by an instance of a Uid. However, the

                                                          
1 The exact number of stations varied with the number of students.



University allocated student number has a different structure to the Arjuna Uid. Therefore, part of the
database, called the keymap, is also responsible for mapping from student numbers to Uids. This
mapping is created during the initial configuration of the database, and uses the UNIX ndbm database
system. This mapping remains static during the registration period, and therefore each client machine
has its own copy. The client is responsible for mapping from the front-end supplied student number to
the corresponding Arjuna Uid in order to complete the request. The handling of requests for new
records may require new records to be created, with a corresponding mapping of new Uid to student
number. This will be described later.

5.2 Student record transactions

The front-end workstations run a program which presents the user with a form to be completed on
behalf of a student. The initial data for this form is loaded from the registration database, if such data
already exists within the system, or a new blank form is presented in the case of students not previously
known to the system. The form consists of a variety of fields, some of which are editable as pure text,
some of which are filled from menus, and some of which are provided purely for information and are
not alterable by the user.

A registration activity consists of the following operations:
 (i) either opening (asking to retrieve) the record, or creating a new record.
 (ii) displaying the record on the screen of the front-end system.
 (iii) either closing it unmodified, or storing the record in the database.2

Any such activity is executed as an atomic action. The actual operations will be described in more
detail later but we present an overview here:
• Open: retrieves an existing record from the database. This operation is used when the record may be

modified by the front-end system, and therefore a write-lock is obtained on the database object.
• New: for students not already registered in the database this operation allows a new record to be

created and modified before being stored.
• Close: terminates the atomic action without modifying the record in the database.
• Store: stores the record in the database, and terminates the atomic action.
• Read: retrieves an existing record from the database, in read-only mode. This operation is typically

used by the swipe-stations, and does not allow modification of the record. Therefore, the Arjuna
client immediately invokes a Close request upon receiving the student data.

In order to start the processing of a record, the user is required to enter the student number, which is
the user’s method of keying into the student record database. A registration activity is started upon
receipt by an Arjuna client of an Open or New request from a front-end; the client starts an atomic
action and the object corresponding to that record is activated. This involves the creation of a server
process, which is then requested to retrieve the object from the object store. The architecture described
above clearly implies that there is one instance of a client for each active front end. Thus, there should
be at most one such active object extant for each client. Although the workstation programs were
intended to avoid the possibility of multiple Open calls being made, it was decided to insure against
erroneous behaviour on the part of the front-end by implementing the client program as a simple finite
state machine. Thus, following an Open request, further Open requests are regarded as inadmissible
until a subsequent Close or Store operation has been performed. Similarly, Close and Store operations
are regarded as invalid unless there has previously been a successful Open request. This is illustrated in
Fig. 5.

                                                          
2 A Delete operation is also provided, but was disabled during the registration period.
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Figure 5: Possible sequences of registration operations.

The StudentRecord object is responsible for ensuring that the record is locked at the start of a
transaction, and Arjuna automatically releases the lock when the transaction completes (either
successfully, or as a result of some failure condition). As stated previously, Read operations obtain read
locks on the student object, whereas Open and New operations obtain write locks.

6. The operations

In the following sections we shall examine in detail the front-end operations, and how they interact
with the StudentRecord objects in terms of the protocol described previously and the operations it
provides.

6.1 Open

The Open operation is used to retrieve a record from the database given the student number. This
operation assumes that the record exists, and one of the failure messages that may be returned indicates
that there is no record corresponding to the given student number. The Open operation first has to
interrogate the keymap to map the student number into a corresponding Arjuna Uid. If an Arjuna Uid is
successfully located, an atomic action is started, and a retrieveExclusiveRecord call is made to the
appropriate server, chosen according to the supplied student number. The server will try to obtain a lock
on the record and get the state of the StudentRecord from the object.

The retrieveExclusiveRecord call will either succeed, in which case the record is delivered to the
front-end, or it will fail, causing an error message to be returned to the front-end and the atomic action
to abort. The reasons why this call may fail are that the record does not exist, or the record is locked in a
conflicting mode. If retrieveExclusiveRecord indicates that the record is locked, then this information is
relayed directly back to the user via an appropriate message; the user then has the option of retrying, or
attempting some other activity. The remaining failure is basically a time out, indicating a “no reply”.
This is interpreted by the client as a failure of the server. If this occurs, then the client attempts to access
the record using one of the backup servers, as described previously.

The server process created in response to the retrieveExclusiveRecord call remains in existence until
the client informs the server that it is no longer required. This will happen either because the
retrieveExclusiveRecord call itself fails, or because the front-end user finishes the registration activity
through the Store or Close operation. The life of the server, the object, and the atomic action is precisely
the duration of a registration activity.

6.2 Read

The Read operation is similar to Open, but invokes the retrieveRecord operation on the
StudentRecord object. Because this obtains the StudentRecord data for read-only operations, such as
required by the swipe-stations, the client automatically issues a Close request. This helps to reduce the
time for which the record is locked, which could prevent other users from manipulating the data. This is
the only operation which the front-end can issue which encapsulates an entire atomic action, i.e., when
the student data is finally displayed the registration atomic action, student record object, and server have
all been terminated.



6.3 Store

The Store operation is used to commit the atomic action and transfer the data, possibly modified by
the user, into the object store database. The Store message generates a replaceRecord call to the server,
which may fail because the server has crashed. This is a potentially more serious situation than if the
server crashes before a retrieveExclusiveRecord call is made, since this represents a failure while an
atomic action is in progress. All modifications made between retrieval and the attempt to save the
record will be lost, but the atomic action mechanism will ensure that the original state of the record is
preserved. If the Store fails, an appropriate message will be displayed at the front-end and the user has
the option to restart the registration activity.

6.4 Close

The Close operation is used simply to end the registration atomic action. It is used in the situation
where a user has retrieved a record, has no further use for it, but does not wish to modify it. The Open
operation will have started a new atomic action, and have caused a server process to be created. The
Close terminates the atomic action (causes it to abort) and also causes the server process to terminate.
The Close operation cannot fail even if the server crashes; a failed server will simply impact on
performance since aborting the action includes sending a message to the server asking it to terminate.

6.5 New

As mentioned previously, some students may appear at registration having no record in the database.
There are two possible reasons for this, and hence two variants of the New operation:

 (i) the student is returning unexpectedly for another year, and already has a valid student number
given in a previous year.

 (ii) the student is new to the University and does not have a student number. Therefore, the system
allocates a new student number from a pool of “spare” numbers.

In case (ii), the pool of numbers is known before the registration begins, and blank records are pre-
created and registered with the system; the mapping from Uid to student number is also known and
written in the keymap database. In order to ensure that simultaneous New requests obtain different
student numbers, the system uses another (replicated) Arjuna object: an index object, which indicates
the next available student number in the free pool. This is an increment operation that atomically
updates the index and returns the new number to the user.

However, in case (i) a new Arjuna object representing the student record has to be created and stored
in the database, and the appropriate mapping from student number to Arjuna Uid stored in an accessible
place. Because each client has its own copy of the keymap database, the creation of new keymap entries
poses a problem of synchronising the updates to the individual copies of the keymap database on the
various client machines. It was decided that the problems associated with the New operation could be
solved by administrative action, and by accepting a single point of failure for this minor part of the
operation3. An alternative ndbm database called newkeymap was created in a shared file store, available
to each Arjuna client system via NFS. This database contained the mappings between new database
object Uids and their corresponding student numbers. It was read/write accessible to users, and was
protected from simultaneous conflicting operations via appropriate concurrency control.

Any Open request must clearly be able to observe changes made to the database as a whole, and
therefore it will have to search both the newkeymap and the keymap databases. If the shared file service
becomes unavailable, no new student records can be created, and neither is it possible to access those
new student records which have already been created. It would be possible to minimise this difficulty by
merging the newkeymap and keymap at times when the system is quiescent.

Given the new (or front-end supplied) student number, a corresponding StudentRecord object is
created with a blank record. The front-end user can then proceed to input the student’s information. In
order to ensure that there would never be any conflict over multiple accesses to newkeymap, and
therefore to the new number pool, it was also decided that the New command should be disabled on
each front-end system except one, which was under the direct control of the Registrar’s staff. This

                                                          
3 In excess of 12,000 students were registered over the registration periods and approximately 200 of these were

added using New.



machine had several backups.

7. Testing and live experience

During the development of the front-end programs, tests were done to ensure that the front-end
software performed satisfactorily. However, the timetable for the whole operation meant that it was
impractical to mount a realistic test using the intended front-end systems themselves, involving as it
would a human operator for each such station. However, it proved relatively straightforward to
construct a program to run on a number of Unix workstations around the campus, which simulated the
basic behaviour of the front-end systems as seen by the registration database. Each simulated front-end
system would retrieve a random record, wait a short period of time to simulate the action of entering
data, and then return the record to the system, possibly having modified it.

It had been estimated that over the registration period, the system would be available for some 30
hours. In this time, it was expected that of the order of 10,000 students would be registered, and that the
database would need to be about 15 Mbytes in size. In some cases, the student record would need to be
accessed more than once, so that it was estimated that approximately 15,000 transactions would take
place. We therefore anticipated that the expected load would be of the order of 500 transactions per
hour, or a little over six per workstation per hour. This however would be the average load, but it was
felt that it would be more realistic to attempt to simulate the peak loading, which was estimated as
follows: the human operator would be required to enter data for each student in turn; the changes to be
made to each record would range from trivial to re-entering the whole record. In fact, in the case of
students for whom no record was pre-loaded, it would be necessary for the whole of the students data to
be entered from the workstation. It was therefore estimated that the time between retrieval and storing
of the record would be between 30 seconds and 5 minutes.

7.1 Simulated operation

A program was written which began by making a TCP connection to one of the Arjuna client
machines. It then selected a student number at random from the keymap data base, retrieved the
corresponding record, waited a random period of time, and then returned the record with a request
either to store or simply to close the record. This final choice was also made at random. After
performing the simulated transaction a fixed number of times, the program closed the TCP connection
and terminated. The program recorded each transaction as it was made, the (random) time waited, the
total time taken and the number of errors observed.

The object of this test was to discover at what point the system would become overloaded, with a
view to “fine-tuning” the system. At the level of the Arjuna servers, it was possible to alter a time-
out/retry within the RPC mechanism (i.e., between client and server) to achieve the optimal
performance, and also to tune the ping daemon described earlier.

The front-end simulation therefore arranged for the record to be retrieved, a random interval of time
uniformly distributed in the range 30 to 300 seconds was allowed to elapse, and the record was then
returned to the system4. The variable parameters of the system were:
• the range of values for the time between retrieving and storing the record.

• the probability that the returned record would have been modified.

• the number of transactions to be performed by each run of the program.

7.1.1 Results
The Arjuna ping daemon was described in Section 3.2. The failure of a machine is suspected

whenever a ping daemon fails to respond (after several retries) to an “are you alive” message. In order
to reduce the probability of incorrect failure suspicion due to network and machine congestion it was
important to tune the timeout and retry values which the ping daemon used. By running the tests at
greater than expected maximum load it was possible to tune these values to reduce the possibility of
incorrect failure suspicion.

                                                          
4 With the addition of the swipe-stations, we reduced the estimated minimum time to 1 second, and tested the

system with 10,000 simulated transactions in 2.5 hours.



The longest run of the test program carried out a total of 1000 simulated transactions, which took
approximately 2 hours to complete. With 10 such processes running, this represented 10000 transactions
in about 2 hours, or 5000 transactions per hour. This was far in excess of the expected average load
during live operation, and approximately twice the expected maximum transaction rate. From these
results, we tuned Arjuna to detect a crashed machine in 10 seconds. Because the simulated load was
greater than that expected during registration, we were confident that we could differentiate between
overloaded and crashed machines during registration.

7.2 Live operation

The live experience was acquired by observing, and to some extent participating in, the operation of
the system during actual registration. At its peak, the system had over 100 simultaneous users
performing work, and on average there were approximately 60. Many of the problems that arose during
this period were unrelated to the technical aspects of the system. Such problems were: incorrect
operation of the system by its operators, including attempting to repeat operations because the response
was not perceived to be satisfactory, failure to install the latest version of the software on the
workstations, and similar problems. In fact overall the system performed extremely well, with good
performance even in the presence of failures.

There was one major difficulty that arose during the first year of operation which caused the system
to be shut down prematurely (about half an hour earlier than scheduled). This occurred at the time
when, and because, the system was heavily loaded, which resulted in slower than expected response
times. The original figures for the number of registration users and hence the expected rate of
transactions were exceeded by over 50%. Because the system had not been tuned for this configuration,
server processes began to incorrectly suspect failures of object store machines. Since the suspicion of
failure depends upon timeout values and the load on the object store machine, it was possible for
different servers to suspect different object store machine failures. This virtual partitioning meant that
some replica states diverged instead of all having the same states, and therefore it was possible for
different users to see inconsistent states. Using timestamps associated with the object states it was
possible to reconcile these inconsistencies, and the system was re-tuned to accommodate the extra load.

Although no hardware failures occurred during the first year, in the second year the registration
system successfully coped with two machine failures. The machines which we were using for
registration were shared resources, available for use by other members of the University. One of the
Arjuna client machines had a faulty disk which caused the machine to crash when accessed over NFS.
This occurred twice during the registration period when other users of the machine were running non-
registration specific applications which accessed the NFS mounted disk.

7.2.1 Performance graphs

The following graphs are based upon the statistics gathered from the 1995-1996 registration period.
Graph 1 shows the total number of transactions (Open/Save, Read/Close, New/Save) performed during
each hour of the registration operation. The registration system was active for 10 days, and each
working day was of 13 hrs duration; the first 5 days were the main period when students presented
themselves for registration, whereas the last 5 days were used more for administration purposes. Each
day is represented by two peaks, representing the main morning and afternoon sessions, with the
minimum occurring when students went to lunch.
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Graph 1: Number of transactions per hour.

As can be seen from the graph, the main period occurred on the second day, when approximately
10,000 transactions occurred, with an average rate of about 750 transactions per hour. The large number
of transactions, and the high transaction rate can be attributed to the swipe stations, which only
performed Read/Close operations.

Graph 1 showed all transactions which occurred during a given registration day. Graph 2 shows the
number of New/Save operations which occurred. Most new students were registered during the first two
days, with approximately 400 being registered in that period.
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Graph 2: Number of requests for New records per hour.

7.3 Front-end performance

The front-end machines took some time to process a record once it had been retrieved. This was
because the record itself contained much of its information in coded form, and it was thought preferable
for the user to be presented with somewhat fuller information. The transformation from coded form to



“usable” form was carried out at the front-end machine. Typically, the Arjuna sub-system would
respond to an Open request in less than 1 second, and the front-end processing would take
approximately 5 seconds. Therefore, the record would be available to the user within 6 seconds of
making the request.

8. Conclusions

The system described here has been used every year since 1994. The University has committed to
continuing to use the registration system, and some considerable effort has gone into making the system
manageable by non-Arjuna experts. The Arjuna system was used in this application to provide high
reliability and availability in case of possible failure of certain components. When failures did occur,
the use of atomic transactions and replication guaranteed consistency and forward progress. The system
has performed well even at maximum load, and the occurrence of failures has caused minor glitches, to
the extent that most users did not realise anything had happened. In the context of the ultimate purpose
of the exercise, namely the completion of the registration process, the outcome was exactly what we
could have wished for. This positive field experience does indicate that it is possible to build high
availability distributed applications by making use of commodity components, such as networked Unix
workstations and relying entirely on software implemented fault-tolerance techniques for meeting
application specific availability and consistency requirements.
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